

FILTROS DE MEMBRANA SIN LAMINADO PTFE

SKU: N / A | **Categorías:** Filtros de disco de membrana, Membranas de PTFE |

VARIACIONES

Imagen	SKU	Descripción	Tamaño del poro (μm)	Diámetro (mm)
STERLITECH-PTU04529310 PTFE Unlaminated Membrane Filters, 0.45 micron, 293mm, 10/Pk	PTU04529310	FILTROS DE MEMBRANA SIN LAMINADO DE PTFE, 0.45 MICRONES, 293MM, PAQ. 10	0.45	293
STERLITECH PTU1003001 PTFE Unlaminated Membrane Filters, 10.0 Micron, 330mm x 3000mm, t/Pk	PTU1003001	FILTROS DE MEMBRANA SIN LAMINADO DE PTFE, 10.0 MICRÓN, 330MM X 3000MM, PAQ. 1	10	330 X 3000
STERLITECI-I- PTU1002005 PTFE Unlaminated Membrane Filters, 10.0 Micron, 200mm x 200mm, 5/Pk	PTU1002005	FILTROS DE MEMBRANA SIN LAMINADO DE PTFE, 10.0 MICRÓN, 200 MM X 200 MM, PAQ. 5	10	200 x 200
STERLITECH-PTU1001350 PTFE Unlaminated Membrane Filters, 10.0 Micron, 13mm, 50/Pk	PTU1001350	FILTROS DE MEMBRANA SIN LAMINADO DE PTFE, 10.0 MICRÓN, 13 MM, PAQ. 50	10	13
STERLITECH-PTU0451350 PTFE Membrane Filters, Unlaminated, 0.45 Micron, 13 mm, 50/Pk	PTU0451350	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0,45 MICRONES, 13 MM, PAQ. 50	0.45	13

lmagen	SKU	Descripción	Tamaño del poro (µm)	Diámetro (mm)
STERLITEC4-1- PTU0452550 PTFE Membrane Filters, Unlaminated, 0.45 Micron, 25 mm, 50/Pk	PTU0452550	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.45 MICRONES, 25 MM, PAQ. 50	0.45	25
STERLITECH-I- PTU0454750 PTEF Membrane Filters, Unlaminated, 0.45 Micron, 47 mm, 50/Pk	PTU0454750	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.45 MICRONES, 47 MM, PAQ. 50	0.45	47
STERLITECH-IP PTU0459010 PTFE Membrane Filters, Unlaminated, 0.45 Micron, 90 mm, 10/Pk	PTU0459010	FILTROS DE MEMBRANA PTFE, SIN LAMINAR, 0,45 MICRONES, 90 MM, PAQ. 10	0.45	90
STERLITECH-I- PTU0453001 PTFE Membrane Filter, Unlaminated, 0.45 Micron, 300 x 3000 mm, 1/Pk	PTU0453001	FILTRO DE MEMBRANA DE PTFE, SIN LAMINAR, 0.45 MICRONES, 300 X 3000 MM, PAQ. 1	0.45	300 x 3000
STERLITECH PTU021350 PTFE Membrane Filters, Unlaminated, 0.2 Micron, 13mm, 50/Pk	PTU021350	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.2 MICRONES, 13MM, PAQ. 50	0.2	13

Imagen	SKU	Descripción	Tamaño del poro (µm)	Diámetro (mm)
STERLITECH-PTU022550 PTFE Membrane Filters, Unlaminated, 0.2 Micron, 25mm, 50/Pk	PTU022550	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.2 MICRONES, 25MM, PAQ. 50	0.2	25
STERLITECH-I- PTU024750 PTFE Membrane Filters, Unlaminated, 0.2 Micron, 47mm, 50/Pk	PTU024750	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.2 MICRONES, 47MM, PAQ. 50	0.2	47
STERLITECH-IPTU029010 PTFE Membrane Filters, Unlaminated, 0.2 Micron, 90mm, 10/Pk	PTU029010	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.2 MICRONES, 90MM, PAQ. 10	0.2	90
STERLITECI-II PTU0214210 PTFE Membrane Filters, Unlaminated, 0.2 Micron, 142mm, 10/Pk	PTU0214210	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.2 MICRONES, 142MM, PAQ. 10	0.2	142
STERLITECI-II- PTU0229310 PTFE Membrane Filters, Unlaminated, 0.2 Micron, 293mm, 10/Pk	PTU0229310	FILTROS DE MEMBRANA DE PTFE, SIN LAMINAR, 0.2 MICRONES, 293MM, PAQ. 10	0.2	293

DESCRIPCIÓN DEL PRODUCTO

[vc_row][vc_column][vc_column_text]

Nuestros filtros de membrana de PTFE hidrofóbicos no compatibles son ideales para aplicaciones de esterilización y ventilación que involucran aire, gases y solventes / ácidos incompatibles con la mayoría de los otros filtros.

Estos filtros de PTFE son químicamente y biológicamente inertes, estables hasta 260 ° C, y resistirán la mayoría de los ácidos y bases concentrados y son especialmente útiles para ambientes que contienen vapor de agua. Se fabrican a través de un proceso patentado en el que las membranas se estiran biaxialmente para formar una estructura de ePTFE pura, de alta porosidad, uniformemente gruesa, termoestable.

[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][vc_separator color="peacoc" style="shadow" border_width="5" el_width="80" css_animation="appear"][vc_tta_tabs][vc_tta_section title="Aplicaciones" tab_id="1562852354020-0a05d449-6386"][vc_column_text]

Aplicaciones de filtro de membrana de PTFE sin laminar

- Productos químicos, petroquímicos y fertilizantes
- Computadoras, semiconductores y electrónica.
- Alimentos y bebidas
- Vidrio y productos de vidrio
- · Sanidad hospitalaria
- Fabricación de Metales y Metales, Minería (Carbón, Minerales, Metales)
- Farmacéutica y medicina
- Generación de energía
- HPLC

[/vc_column_text][/vc_tta_section][vc_tta_section title="Especificaciones" tab_id="1562852354040-a5338c81-c62a"][vc_column_text]

Rendimiento por tamaño de poro

Clasificación de tamaño de poro (µm)	Espesor (μm)	Permeabilidad al aire1 (L / min • cm² a 70mbar)	Flujo de agua limpia1 (mL / min • cm² a 0.7bar)	Presión de entrada de agua (psi)	Punto de burbuja de alcohol 2 (psi)
0.2	25-51	0.3-0.9	15	NT	19-26
0.45	25-51	0.5-1.4	NT	>45	13-23
1.0	203-305	0.9-1.1	61-92	5.5-6.5	1.0-1.4
5.0	152-254	1.1-1.3	92-153	3.5-4.5	0.8-1.2
10	130	>1.2	>94	NT	0.7

Notas:

1 Valores calculados asumiendo una relación lineal entre flujo y presión diferencial.

2 puntos de burbuja: 0.2 y 0.45 μm medidos con isopropanol, los tamaños de poros restantes se midieron con etanol

[/vc_column_text][/vc_tta_section][vc_tta_section title="Hoja de datos" tab_id="1562852406273-966952d9-ad8b"][vc_column_text]PTFE_Membrane_Filters_Data_Sheet

[/vc_column_text][/vc_tta_section][vc_tta_section title="Preguntas Frecuentes"

tab_id="1562852419594-9db7d62c-3734"][vc_toggle title="¿Cuál es la diferencia entre filtros de membrana hidrófilos e hidrófobos?" custom_font_container="tag:p|font_size:19|text_align:left"

custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use_custom_heading="true"]

Los poros de los filtros de membrana microporosos actúan como pequeños capilares. Cuando las membranas hidrófilas entran en contacto con el agua, la acción capilar asociada con las fuerzas de tensión de la superficie hace que el agua entre espontáneamente y llene los poros. De esta manera, las membranas se humedecen fácilmente y permiten el flujo masivo de agua a través de los poros. Una vez humedecidas, las membranas hidrófilas no permitirán el flujo masivo de aire u otros gases, a menos que se apliquen a presiones superiores al punto de burbuja de la membrana.

Los filtros de membrana hidrófilos se utilizan típicamente con agua y soluciones acuosas. También se pueden utilizar con fluidos no acuosos compatibles. Los filtros de membrana hidrófilos generalmente no se usan para la filtración de aire, gas o ventilación, ya que los filtros bloquearían el flujo si se humedecen inadvertidamente, por condensación, por ejemplo.

Cuando las membranas hidrófobas entran en contacto con el agua, las fuerzas de tensión de la superficie actúan para repeler el agua de los poros. El agua no entrará en los poros y las membranas actuarán como una barrera para el flujo de agua, a menos que el agua se aplique a presiones superiores a la presión de entrada de agua de la membrana. Los fluidos de baja tensión superficial, como los alcoholes, pueden entrar y llenar espontáneamente los poros de las membranas hidrófobas. Una vez que todo el aire en los poros se desplaza, ya no hay fuerzas de tensión en la superficie y el agua puede entrar fácilmente en los poros, desplazar el fluido de baja tensión en la superficie y pasar a través de la membrana. La membrana permitirá entonces un flujo masivo de agua mientras el poro permanezca lleno de agua. Si se deja secar la membrana (es decir, el aire entra por los poros), debe humedecerse previamente con un fluido de baja tensión superficial antes de usarla con agua.

Los filtros de membrana hidrófobos se usan típicamente con fluidos no acuosos compatibles. También se utilizan

comúnmente como filtros de aire, gas o ventilación. Los filtros de membrana hidrófobos se utilizan a veces con agua o soluciones acuosas; y, en estas aplicaciones, primero deben prepararse previamente con una baja tensión superficial, líquido miscible en agua antes de su uso.

[/vc_toggle][vc_toggle title="¿Cuál es la diferencia entre las clasificaciones de tamaño de poro nominal y absoluto?" custom_font_container="tag:p|font_size:19|text_align:left" custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use_custom_heading="true"]

Las clasificaciones de tamaño de poro nominal se proporcionan como una indicación general de la retención del filtro. Se entiende que una cantidad de partículas mayor que, e igual a, las clasificaciones de tamaño de poro nominal pasarán a través de los filtros hacia el filtrado. Algunos fabricantes pueden asociar las clasificaciones de tamaño de poro nominal con el porcentaje de eficiencia de filtración. Las clasificaciones de tamaño de poro nominal varían de un fabricante a otro y, en consecuencia, no son necesariamente equivalentes. Es posible que los filtros de diferentes fabricantes con clasificaciones de tamaño de poro nominal similares no muestren características de retención similares.

Las clasificaciones de tamaño de poro absoluto se basan típicamente en estudios de retención realizados utilizando suspensiones de desafío de cultivos de microorganismos estándar o partículas de tamaño conocido. Las clasificaciones de tamaño de poro absoluto representan el tamaño de los microorganismos más pequeños o partículas retenidas completamente durante estos estudios. Las clasificaciones de tamaño de poro absoluto casi siempre están correlacionadas con las especificaciones de puntos de burbuja que se utilizan para el control de calidad durante la fabricación de la membrana. En su mayor parte, las clasificaciones de tamaño de poro absoluto, especialmente aquellas basadas en la retención microbiana, son comparables de un fabricante a otro. Hay más incertidumbre para las clasificaciones de tamaño de poro absolutas basadas en estudios de retención de partículas, especialmente para clasificaciones de tamaño de poro <0.2µm, ya que no existen métodos estándar para estos estudios.

Independientemente de las clasificaciones de tamaño de poro, es importante comprender que las condiciones de la aplicación influyen en la retención de partículas. Incluso los filtros con clasificación de tamaño de poro absoluto pueden operarse en condiciones que permitirán el paso de partículas de tamaño inesperado.

[/vc_toggle][vc_toggle title="¿Cuál es la diferencia entre un filtro de profundidad y un filtro de membrana?" custom_font_container="tag:p|font_size:19|text_align:left" custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use_custom_heading="true"]

Los filtros de profundidad se construyen con medios de filtración relativamente gruesos y, por lo general, tienen clasificaciones de tamaño de poro nominal> $1 \mu m$. Debido a su gran volumen vacío, capturan cantidades significativas de partículas dentro de su estructura de poros.

Los filtros de membrana están compuestos típicamente de polímeros que se han procesado químicamente, lo que da como resultado películas delgadas altamente porosas con estructuras de poros microscópicas. Los filtros de membrana suelen tener clasificaciones absolutas de tamaño de poro $<1~\mu m$, con algunas excepciones. Debido a su estructura de poros muy finos, los filtros de membrana tienden a atrapar la mayoría de las partículas en la superficie. Sin embargo, las partículas más pequeñas con diámetros cerca o por debajo de la clasificación de tamaño de poro se pueden capturar dentro de la membrana o pasar a través de la membrana.

[/vc_toggle][vc_toggle title="¿Cuál es la diferencia entre el tamaño de poro y la porosidad?" custom_font_container="tag:p|font_size:19|text_align:left" custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use_custom_heading="true"]

El tamaño de los poros se refiere al diámetro de los poros individuales en un filtro de membrana. El tamaño del poro se suele especificar en micrómetros (μm). La mayoría de las membranas y los medios de filtración contienen en realidad una distribución de tamaños de poros de poros. Las clasificaciones de tamaño de poro nominal generalmente se refieren al tamaño de

poro predominante de un medio de filtración; Los poros más grandes y más pequeños que la calificación nominal pueden estar presentes. Las clasificaciones de tamaño de poro absoluto generalmente se refieren al tamaño de poro más grande de una membrana y se espera que todos los poros sean iguales o más pequeños que la clasificación absoluta.

Para los filtros de membrana de policarbonato (PCTE) y poliéster (PETE), la porosidad es el porcentaje del área de superficie total ocupada por los poros; Por lo general, varía entre <1% y 16%. Para los otros filtros de membrana, la porosidad es el porcentaje del volumen total ocupado por los poros; Normalmente oscila entre el 40 y el 80%.

[/vc_toggle][vc_toggle title="¿Cómo puedo determinar si mi filtro es compatible con mi aplicación?" custom_font_container="tag:p|font_size:19|text_align:left" custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use custom heading="true"]

Puede encontrar la guía de compatibilidad a continuación:

Chemical Compatibility

Es importante darse cuenta de que las condiciones de aplicación, tales como temperatura de funcionamiento, afecta a la compatibilidad.

[/vc_toggle][vc_toggle title="¿Cómo puedo saber la diferencia entre los papeles separadores y los filtros de membrana?" custom_font_container="tag:p|font_size:19|text_align:left" custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use_custom_heading="true"]

Para garantizar la facilidad de uso, los filtros de membrana apilados en su embalaje se entrelazan con capas de papel separador. En la mayoría de los casos, los filtros de membrana serán de color blanco, excepto las membranas de grabado que son incoloras y translúcidas. En algunos casos especiales, las membranas se teñirán de color gris oscuro a negro en apariencia. En todos los casos, el papel separador tendrá un color diferente al de la membrana y generalmente no es blanco.

[/vc_toggle][vc_toggle title="¿Qué es un punto de burbuja y cómo se determina?" custom_font_container="tag:p|font_size:19|text_align:left" custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use_custom_heading="true"]

El punto de burbuja es la cantidad mínima de presión requerida para empujar las burbujas de aire a través del poro más grande de una membrana húmeda. El punto de burbuja es inversamente proporcional al diámetro de poro, ya que el diámetro de poro disminuye, el punto de burbuja aumenta y viceversa.

La eficiencia de retención de los filtros de membrana se puede medir directamente desafiando los filtros con suspensiones de cultivos de microorganismos estándar o partículas de tamaño conocido. Desafortunadamente, tales pruebas de eficiencia son necesariamente destructivas. Sin embargo, dado que las características de retención dependen del tamaño de los poros, es posible correlacionar los resultados de las pruebas de desafío destructivas con las pruebas no destructivas del punto de burbuja de la membrana. De esta manera, la relación entre el tamaño de los poros de la membrana y el punto de burbuja de la membrana se determina empíricamente. Por lo general, se puede determinar y especificar un punto de burbuja mínimo para una clasificación de tamaño de poro particular. La especificación del punto de burbuja se utiliza para el control de calidad durante la fabricación de la membrana. El consumidor también puede utilizar el punto de burbuja como una prueba no destructiva para verificar la integridad de la membrana antes y / o después del uso.

 $custom_font_container="tag:p|font_size:19|text_align:left"\\ custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal"\\ use_custom_heading="true"]$

Las membranas de PTFE son extremadamente hidrófobas y exhiben una compatibilidad química superior con soluciones agresivas.

[/vc_toggle][vc_toggle title="¿Los filtros de membrana hidrofílicos de PTFE sin laminar Advantec son permanentemente hidrofílicos?" custom_font_container="tag:p|font_size:19|text_align:left" custom_google_fonts="font_family:Abel%3Aregular|font_style:400%20regular%3A400%3Anormal" use_custom_heading="true"]

Los filtros de membrana hidrofílicos de PTFE sin laminar Advantec no son permanentemente hidrofílicos. Una vez humedecidos, se volverán hidrófobos si se dejan secar. Además, se volverán hidrófobos si el autoclave se esteriliza o se expone a temperaturas> 100 ° C.

[/vc_toggle][/vc_tta_section][/vc_tta_tabs][/vc_column][/vc_row]

INFORMACIÓN ADICIONAL

Tamaño del poro (μm) 0.45, 10, 0.2, 1, 5

Diámetro (mm) 293, 330 X 3000, 200 x 200, 13, 25, 47, 90, 300 x 3000, 142, 254 x 3000